Definitions and key facts for section 5.4

Let V and W be vector spaces with bases $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right\}$ respectively. If $T: V \rightarrow W$ is a linear transformation between these two vector spaces, then we can define a matrix transformation between the coordinate vectors of each input $[\mathbf{x}]_{\mathcal{B}}$ and its image $[T(\mathbf{x})]_{\mathcal{C}}$.

In particular, the matrix for T relative to the bases \mathcal{B} and \mathcal{C} is

$$
M=\left[\begin{array}{llll}
{\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}} & {\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{C}}} & \cdots & {\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{C}}}
\end{array}\right]
$$

In this case, for every \mathbf{x} in V we have

$$
[T(\mathbf{x})]_{\mathcal{C}}=M[\mathbf{x}]_{\mathcal{B}}
$$

In the case that T is a linear transformation from V to itself, so $T: V \rightarrow V$, we only require the basis \mathcal{B} to form M and we call it \mathcal{B}-matrix for T and use the notation

$$
[T]_{\mathcal{B}}=\left[\left[\begin{array}{llll}
\left.T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{B}} & {\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{B}}} & \cdots & \left.\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{B}}\right] .
\end{array}\right.\right.
$$

Notice that the \mathcal{B}-matrix for $T: V \rightarrow V$ satisfies

$$
[T(\mathbf{x})]_{\mathcal{B}}=[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

for all \mathbf{x} in V.

In the case where $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

$$
[T]_{\mathcal{E}}=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right]
$$

is the standard matrix of T and for any other nonstandard basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ we have

$$
[T]_{\mathcal{B}}=\left[\begin{array}{llll}
{\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{B}}} & {\left[\begin{array}{lll}
\left.T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{B}} & \cdots & {\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{B}}}
\end{array}\right]}
\end{array}\right.
$$

as above. Note for all \mathbf{x} in \mathbb{R}^{n} we have

$$
T(\mathbf{x})=[T(\mathbf{x})]_{\mathcal{E}}=[T]_{\mathcal{E}}[\mathbf{x}]_{\mathcal{E}}=[T]_{\mathcal{E}} \mathbf{x} \text { and }[T(\mathbf{x})]_{\mathcal{B}}=[T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}
$$

Fact: If $A=P D P^{-1}$, where D is a diagonalizable $n \times n$ matrix and \mathcal{B} is the basis for \mathbb{R}^{n} formed from the columns of P, then D is the \mathcal{B}-matrix for the transforomation $\mathbf{x} \mapsto A \mathbf{x}$

