Definitions and key facts for section 5.4

Let V and W be vector spaces with bases $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n}$ and $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n}$ respectively. If $T: V \to W$ is a linear transformation between these two vector spaces, then we can define a matrix transformation between the coordinate vectors of each input $[\mathbf{x}]_{\mathcal{B}}$ and its image $[T(\mathbf{x})]_{\mathcal{C}}$.

In particular, the matrix for T relative to the bases $\tilde{\mathcal{B}}$ and \mathcal{C} is

$$M = \left[\begin{bmatrix} T(\mathbf{b}_1) \end{bmatrix}_{\mathcal{C}} \quad \begin{bmatrix} T(\mathbf{b}_2) \end{bmatrix}_{\mathcal{C}} \quad \cdots \quad \begin{bmatrix} T(\mathbf{b}_n) \end{bmatrix}_{\mathcal{C}} \right].$$

In this case, for every \mathbf{x} in V we have

$$\left[T(\mathbf{x})\right]_{\mathcal{C}} = M\left[\mathbf{x}\right]_{\mathcal{B}}.$$

In the case that T is a linear transformation from V to itself, so $T: V \to V$, we only require the basis \mathcal{B} to form M and we call it \mathcal{B} -matrix for T and use the notation

$$[T]_{\mathcal{B}} = [[T(\mathbf{b}_1)]_{\mathcal{B}} \quad [T(\mathbf{b}_2)]_{\mathcal{B}} \quad \cdots \quad [T(\mathbf{b}_n)]_{\mathcal{B}}].$$

Notice that the \mathcal{B} -matrix for $T: V \to V$ satisfies

$$\left[T(\mathbf{x})\right]_{\mathcal{B}} = \left[T\right]_{\mathcal{B}} \left[\mathbf{x}\right]_{\mathcal{B}}$$

for all \mathbf{x} in V.

In the case where $T: \mathbb{R}^n \to \mathbb{R}^n$

$$\begin{bmatrix} T \end{bmatrix}_{\mathcal{E}} = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix}$$

is the standard matrix of T and for any other nonstandard basis $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ we have

$$[T]_{\mathcal{B}} = [[T(\mathbf{b}_1)]_{\mathcal{B}} \quad [T(\mathbf{b}_2)]_{\mathcal{B}} \quad \cdots \quad [T(\mathbf{b}_n)]_{\mathcal{B}}]$$

as above. Note for all \mathbf{x} in \mathbb{R}^n we have

$$T(\mathbf{x}) = [T(\mathbf{x})]_{\mathcal{E}} = [T]_{\mathcal{E}} [\mathbf{x}]_{\mathcal{E}} = [T]_{\mathcal{E}} \mathbf{x} \text{ and } [T(\mathbf{x})]_{\mathcal{B}} = [T]_{\mathcal{B}} [\mathbf{x}]_{\mathcal{B}}$$

Fact: If $A = PDP^{-1}$, where *D* is a diagonalizable $n \times n$ matrix and \mathcal{B} is the basis for \mathbb{R}^n formed from the columns of *P*, then *D* is the \mathcal{B} -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$